Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Virol ; 96(1): e29399, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38235792

RESUMEN

The infection with coxsackievirus B4 (CVB4) can be enhanced in vitro by antibodies directed against the viral capsid protein VP4. In peripheral blood mononuclear cells, antibody-dependent enhancement (ADE) of CVB4 infection leads to the production of interferon alpha (IFN-α). To investigate ADE of CVB4-induced production of IFN-α, an agent-based model was constructed with enhancing and neutralizing antibodies. The model recapitulates viral neutralization and ADE in silico. The enhancing and neutralizing activities of serum samples were evaluated in vitro to confront the model predictions with experimental results. Increasing the incubation time of CVB4 with serum samples improves virus neutralization in silico as well as in vitro. It also results in ADE at lower antibody numbers in silico, which is confirmed in vitro with IFN-α production at lower serum concentrations. Furthermore, incubation of CVB4 with serum at a low temperature does not induce IFN-α production in vitro. Thus, taken together our results suggest that enhancing antibodies bind cryptic epitopes, more accessible with longer incubation time and at higher temperature due to changes in capsid conformation, consistent with previous results indicating that enhancing antibodies are anti-VP4 antibodies.


Asunto(s)
Enterovirus Humano B , Leucocitos Mononucleares , Humanos , Acrecentamiento Dependiente de Anticuerpo , Anticuerpos Bloqueadores , Anticuerpos Antivirales , Interferón-alfa
2.
Med Mycol ; 61(8)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37505466

RESUMEN

Onychomycosis is an important public health problem whose prevalence continues to grow and impact public health at several levels. Nevertheless, today the main diagnostic methods used in routine practice have many drawbacks. The aim of this study was to evaluate, for the first time, the clinical performance of a new multiplex polymerase chain reaction (PCR) (Novaplex®) in the identification of the causative agent on nail samples, and its impact on the turnaround time, compared to our traditional laboratory methods. From June 2022 to December 2022, all nail samples sent to our laboratory for suspected onychomycosis were included in this prospective study. We collected for each sample the results obtained with the Novaplex® PCR method and with the traditional direct microscopy examination and culture. Each discordant result was checked using a third method, which is another PCR method (DermaGenius® kit) as a resolver. For culture-positive samples, a turnaround time was calculated and compared to the one obtained with the Novaplex® method. A total of 131 samples were included. Among them, 5 were positive (3.8%) on direct microscopy, 33 were positive (25.2%) after culture, and 98 were negative (74.8%). All positive (n = 33) and negative (n = 69) cultures were also positive/negative with the Novaplex® PCR. Twenty-nine samples were positive with the Novaplex® method but negative with culture (discordant results). The percentage agreement between the culture and the Novaplex® methods was 77.9% (102 out of 131). While tested with the resolver (DermaGenius® PCR), 28 out of 29 discordant results were similarly found positive. The percentage agreement between the two PCR methods (Novaplex® and DermaGenius®) was 96.6%. The Novaplex® PCR method evaluated proved to be very reliable and allowed the direct identification of 62 out of 131 positive samples (47.3%) with the following distribution: 79.0% of Trichophyton rubrum complex, 11.3% of Trichophyton mentagrophytes complex, 6.5% of both Trichophyton rubrum complex and Trichophyton mentagrophytes complex, and 3.2% of Candida albicans. The median time [± 95% CI] for positive culture (between incubation and validation of the final identification) was 15 [12-23] days, while the turnaround time for the Novaplex® method adapted to our clinical laboratory routine is ≤7 days. Laboratory confirmation of onychomycosis is crucial and should always be obtained before starting treatment. The evaluated PCR method offered a rapid, reliable, robust, and inexpensive method of identification of the causative agent compared to traditional methods.


The aim of this study was to evaluate the clinical performance of a multiplex PCR in the identification of the causative agent of onychomycosis on nail samples, and its impact on the turnaround time, compared to our traditional laboratory methods. This new method is rapid, reliable, robust, and inexpensive.


Asunto(s)
Arthrodermataceae , Onicomicosis , Animales , Onicomicosis/diagnóstico , Onicomicosis/veterinaria , Arthrodermataceae/genética , Estudios Prospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , ADN de Hongos , Sensibilidad y Especificidad , Reacción en Cadena de la Polimerasa Multiplex/métodos , Reacción en Cadena de la Polimerasa Multiplex/veterinaria , Trichophyton/genética
3.
Microorganisms ; 11(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37317236

RESUMEN

Viral infections have been suspected of being involved in the pathogenesis of certain autoimmune diseases for many years. Epstein-Barr virus (EBV), a DNA virus belonging to the Herpesviridae family, is thought to be associated with the onset and/or the progression of multiple sclerosis (MS), systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome and type 1 diabetes. The lifecycle of EBV consists of lytic cycles and latency programmes (0, I, II and III) occurring in infected B-cells. During this lifecycle, viral proteins and miRNAs are produced. This review provides an overview of the detection of EBV infection, focusing on markers of latency and lytic phases in MS. In MS patients, the presence of latency proteins and antibodies has been associated with lesions and dysfunctions of the central nervous system (CNS). In addition, miRNAs, expressed during lytic and latency phases, may be detected in the CNS of MS patients. Lytic reactivations of EBV can occur in the CNS of patients as well, with the presence of lytic proteins and T-cells reacting to this protein in the CNS of MS patients. In conclusion, markers of EBV infection can be found in MS patients, which argues in favour of a relationship between EBV and MS.

4.
Microorganisms ; 11(2)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36838326

RESUMEN

Viral infections have been frequently associated with physiological and pathological changes in the endocrine system for many years. The numerous early and late endocrine complications reported during the current pandemic of coronavirus disease 2019 (COVID-19) reinforce the relevance of improving our understanding of the impact of viral infections on the endocrine system. Several viruses have been shown to infect endocrine cells and induce endocrine system disturbances through the direct damage of these cells or through indirect mechanisms, especially the activation of the host antiviral immune response, which may lead to the development of local or systemic inflammation or organ-specific autoimmunity. In addition, endocrine disorders may also affect susceptibility to viral infections since endocrine hormones have immunoregulatory functions. This review provides a brief overview of the impact of viral infections on the human endocrine system in order to provide new avenues for the control of endocrine diseases.

6.
Diagnostics (Basel) ; 12(2)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35204538

RESUMEN

The Lumipulse® G SARS-CoV-2 Ag assay performance was evaluated on prospectively collected saliva and nasopharyngeal swabs (NPS) of recently ill in- and outpatients and according to the estimated viral load. Performances were calculated using RT-PCR positive NPS from patients with symptoms ≤ 7 days and RT-PCR negative NPS as gold standard. In addition, non-selected positive NPS were analyzed to assess the performances on various viral loads. This assay yielded a sensitivity of 93.1% on NPS and 71.4% on saliva for recently ill patients. For NPS with a viral load > 103 RNA copies/mL, sensitivity was 96.4%. A model established on our daily routine showed fluctuations of the performances depending on the epidemic trends but an overall good negative predictive value. Lumipulse® G SARS-CoV-2 assay yielded good performance for an automated antigen detection assay on NPS. Using it for the detection of recently ill patients or to screen high-risk patients could be an interesting alternative to the more expensive RT-PCR.

7.
Front Med (Lausanne) ; 8: 650581, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33889587

RESUMEN

Introduction: Since the first wave of COVID-19 in Europe, new diagnostic tools using antigen detection and rapid molecular techniques have been developed. Our objective was to elaborate a diagnostic algorithm combining antigen rapid diagnostic tests, automated antigen dosing and rapid molecular tests and to assess its performance under routine conditions. Methods: An analytical performance evaluation of four antigen rapid tests, one automated antigen dosing and one molecular point-of-care test was performed on samples sent to our laboratory for a SARS-CoV-2 reverse transcription PCR. We then established a diagnostic algorithm by approaching median viral loads in target populations and evaluated the limit of detection of each test using the PCR cycle threshold values. A field performance evaluation including a clinical validation and a user-friendliness assessment was then conducted on the antigen rapid tests in point-of-care settings (general practitioners and emergency rooms) for outpatients who were symptomatic for <7 days. Automated antigen dosing was trialed for the screening of asymptomatic inpatients. Results: Our diagnostic algorithm proposed to test recently symptomatic patients using rapid antigen tests, asymptomatic patients using automated tests, and patients requiring immediate admission using molecular point-of-care tests. Accordingly, the conventional reverse transcription PCR was kept as a second line tool. In this setting, antigen rapid tests yielded an overall sensitivity of 83.3% (not significantly different between the four assays) while the use of automated antigen dosing would have spared 93.5% of asymptomatic inpatient screening PCRs. Conclusion: Using tests not considered the "gold standard" for COVID-19 diagnosis on well-defined target populations allowed for the optimization of their intrinsic performances, widening the scale of our testing arsenal while sparing molecular resources for more seriously ill patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...